Bioremediation: A Sustainable Approach for Environmental Cleanup 13

future. Approaches to bioremediation largely depend on the concepts of in-situ and ex-situ technology.

In order to select the bioremediation method that would remove contaminants effectively, different

factors such as the presence of a particular microbial community, the bioavailability of pollutants

and environmental conditions have to be taken into consideration. As a result, improving our

understanding of microbial populations and how they interact with their specific environment and

pollutants, learning more about microbial genomics to increase their capacity for biodegradation

and evaluating the efficacy of new bioremediation strategies in the field will allow one to develop

more convenient bioremediation techniques.

References

Abbas, N., M. T. Butt, M. M. Ahmad, F. Deeba and N. Hussain. 2021. Phytoremediation potential of Typha latifolia

and water hyacinth for removal of heavy metals from industrial wastewater. Chem. Int. 7(2): 103–111.

Agrawal, N., V. Kumar and S. K. Shahi. 2021. Biodegradation and detoxification of phenanthrene in in-vitro and

in vivo conditions by a newly isolated ligninolytic fungus Coriolopsis byrsina strain APC5 and characterization

of their metabolites for environmental safety. Environ. Sci. Pollut. Res., 1–16.

Aggarwal, P. K., J. L. Means, R. E. Hinchee, G. L. Headington and A. R. Gavaskar. 1990. Methods to select chemicals

for in situ biodegradation of fuel hydrocarbons. Batt. Col. Div. Oh.

Ajaz, M., A. Elahi and A. Rehman. 2018. Degradation of azo dye by bacterium, Alishewanella sp. CBL-2 isolated

from industrial effluent and its potential use in decontamination of wastewater. J. of Water Reuse Desalin. 8(4):

507–515.

Akansha, K., A. N. Yadav, M. Kumar, D. Chakraborty and S. Ghosh Sachan. 2022. Decolorization and degradation of

reactive orange 16 by Bacillus stratosphericus SCA1007. Folia Microbiol. 67(1): 91–102.

Ali, H., E. Khan and M. A. Sajad. 2013. Phytoremediation of heavy metals—concepts and applications. Chemosphere.

91(7): 869–881.

Antizar-Ladislao, B. 2010. Bioremediation: working with bacteria. Elements. 6(6): 389–394.

Atlas, R. M. and J. Philp. 2005. Bioremediation. Applied Microbial Solutions for Real-world Environmental Cleanup.

ASM Press.

Azab, E. and A. K. Hegazy. 2020. Monitoring the efficiency of Rhazya stricta L. plants in phytoremediation of heavy

metal-contaminated soil. Plants. 9(9): 1057.

Azubuike, C. C., C. B. Chikere and G. C. Okpokwasili. 2016. Bioremediation techniques–classification based on site

of application: principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 32(11): 1–18.

Bako, C. M., T. E. Mattes, R. F. Marek, K. C. Hornbuckle and J. L. Schnoor. 2021. Dataset describing biodegradation

of individual polychlorinated biphenyl congeners (PCBs) by Paraburkholderia xenovorans LB400 in presence

and absence of sediment slurry. Data in Brief. 35: 106821.

Barathi, S. and N. Vasudevan. 2001. Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated

from a petroleum-contaminated soil. Environ. Int. 26(5-6): 413–416.

Barroso, G. M., J. B. dos Santos, I. T. de Oliveira, T. K. M. R. Nunes, E. A. Ferreira, I. M. Pereira, D. V. Silva and

M. de Freitas Souza. 2020. Tolerance of Bradyrhizobium sp. BR 3901 to herbicides and their ability to use

these pesticides as a nutritional source. Ecol. Indic. 119: 106783.

Bedard, D. L. and R. J. May. 1995. Characterization of the polychlorinated biphenyls in the sediments of Woods Pond:

evidence for microbial dechlorination of Aroclor 1260 in situ. Environ. Sci. Technol. 30(1): 237–245.

Bender, J. and P. Phillips. 2004. Microbial mats for multiple applications in aquaculture and bioremediation. Bioresour.

Technol. 94(3): 229–238.

Bhattacharya, S., A. Das, K. Prashanthi, M. Palaniswamy and J. Angayarkanni. 2014. Mycoremediation of Benzo

[a] pyrene by Pleurotus ostreatus in the presence of heavy metals and mediators. 3 Biotech. 4(2): 205–211.

Boopathy, R. 2000. Factors limiting bioremediation technologies. Bioresour. Technol. 74(1): 63–67.

Boyle, A. W., C. J. Silvin, J. P. Hassett, J. P. Nakas and S. W. Tanenbaum. 1992. Bacterial PCB

biodegradation. Biodegradation. 3(2): 285–298.

Brar, S. K., M. Verma, R. Y. Surampalli, K. Misra, R. D. Tyagi, N. Meunier and J. F. Blais. 2006. Bioremediation

of hazardous wastes—a review. Practice Periodical of Hazardous. J. Hazard. Toxic Radioact. Waste. 10(2):

59–72.

Briceño, G., K. Vergara, H. Schalchli, G. Palma, G. Tortella, M. S. Fuentes and M. C. Diez. 2018. Organophosphorus

pesticide mixture removal from environmental matrices by a soil Streptomyces mixed culture. Environ. Sci.

Pollut. Res. 25(22): 21296–21307.

Cao, H., C. Wang, H. Liu, W. Jia and H. Sun. 2020. Enzyme activities during Benzo [a] pyrene degradation by the

fungus Lasiodiplodia theobromae isolated from a polluted soil. Sci. Rep. 10(1): 1–11.